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On Counters Used for Node Synchronization
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A node synchronization algorithm for a quick-look convolutional decoder was given in
a previous article, which left two assertions unproved. The present article proves these
assertions and gives an estimate for the distribution of the time to false alarm.

I. Introduction

A suboptimal quick-look decoding algorithm for the Deep
Space Network (DSN) (7, 1/2) convolutional code is discussed
in Refs. 1 to 3. Figure 1 shows the encoding and decoding
schemes (without error correction, which does not concern us
~ here). To detect node synchronization, one can use an up-
down counter driven by the syndrome bits p,, as follows: If
p, =0, then the counter is decremented by 1;if p,, =1, then
the counter is incremented by a fixed positive integer &k - 1.
The counter is not allowed to become negative, however, and a
false-sync condition is declared if the counter reaches a certain
threshold 7.

The probability of false alarm, Pp 4, is the probability of
reaching T during the total time of use, given that sync is true.
We want Pp, to be small. References 2 and 3 give estimates
for Ep 4, the expected time to false alarm, and execute a
counter design based in part on the requirement Ep , >>n,,
the total number of bits seen by the decoder (specifically,
Ep 4 > 100 n,). This is dangerous because the ratio Ep 4 /n,
by itself gives no information about P .

We have three aims here. First, the behavior of the node
sync counter, called Counter 1, is estimated in Ref.2 by
comparing it to a certain random walk with independent steps,
called Counter 2. Reference 2 asserts that Counter 1 is never

above Counter 2. At the time, we carelessly regarded this
assertion as obvious; in fact, it requires a substantial proof,
which we give below. Second, we prove that the first-passage
times of Counter 2 have finite expectation; Ref. 2 gives esti-
mates for these expectations without proving their existence.
Third, we give a crude (but still useful) estimate for Pp .

Il. Proof That Counter 1 < Counter 2

First, we review the generation of the syndrome (p,).
According to Fig. 1, the syndrome is obtained by combining
the outputs of two shift registers fed by the corrupted channel
symbols s}, 55,. The shift register taps are given by the
polynomials

C(x) = 1+x? +x> +x° +x°
Cz(x) = 1+x+x? +x3+x°

Let e,,, €,, be the binary channel symbol errors, with asso-
ciated formal power series

E,(x) =Ze1nx",E2(x) =Ee2nx".
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Then, if
P(x) =Z p,x",
we have

Pix) = C,(0)E (x) + C (x)E,(x) (mod 2) N

Next, we define the counters. Lete, (t=1/2,1,3/2,2,- ")
be the multiplexed symbol error stream, that is, €,_; ;, = ey,
€, = e,,. Counters 1 and 2 both start at zero. Let K,(n) =
counter 1 state at bit time n, K, (f) = counter 2 state. at time
t=1/2, 1, 3/2, 2,---. For our purpose we can ignore the
absorbing barrier at 7. Let &k be a fixed integer >2. By
definition,

K, (0) = K,0) = 0

K@®-K@m-1)=k-1 ifp, =1
=-1  ifp, = 0,K, (n-1)>0
=0 ifp, =0,K,(n-1) =0

K -K L) k L fe, =1

@)~ K\t 5 )= 56--2— ife, =

_ 1 . _ 1
= -3 1fet O,K2<t-~§)> 0
=0 fe = 0,K,(r-<)=0
= ife, » K, l‘~—2' =

Theorem: Assume that e,, = e,, =0 for n <0. For any
symbol error sequence (e, ,,, e,,,: 1 = 1), we have

K.(m<K,(n) n=1,2,--")

If there were no reflecting barrier, the theorem would be *

obvious, for let K:- be Counter { without the barrier. For
example, K (n)- Ky(n-1)= kp, - 1 for all n. Then, as
Ref. 2 points out,

n
K (n) = kzpj—n<5k e, ~n=K,(n)

j=1 t<n

since each €, = 1 propagates a pattern of 5 parity errors into
the future, and these patterns are added modulo 2.
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To prove the theorem with the barrier, we introduce
another sequence ¢, q,, ' and a third counter K. The
formal power series

o) =) q,x"

is defined by

Q(x) = C,(0)E, (x)+ C; (x)E, (x)

which is just Eq. (1), except that now the arithmetic is not
performed modulo 2. Thus, p, = g, mod 2 <g,,. The counter
K, is driven from the g, just as K, is driven from the p,,. By
definition, K3(0) =0 and

K,(n)-K,(n-1) = kq, - 1 ifg, > 0

= -1 ifq, = 0,K;(n-1) >0
=0 ifq, = 0,K;(n-1) =0
Our purpose is to prove that
K, (n)<K,(n), K (n)<K,(n)foralln )

Since p, < q,, we have K, (n) - K, (n- D) <K;(n)- K3(n-1).
This proves the first half of Eq. (2).

To prove the second half, we introduce the notion of burst
event. We shall say that a burst event starts at the integer m if
e, =1 o0re,, =1, and the previous 6 bit times are free of
symbol errors. It ends (at integer time » > m) as soon as 6
consecutive error-free bit times have occurred (at times
#= 5, 7). (The event goes on forever if a run of 6 good bit
times never occurs after m.)

Let a burst event start at m. Let K3 be K; without the
reflecting barrier. We shall prove that

Ki(n) - Ky(m- 1) =K (n) - Ky(m~1) 3)

for all n in the burst event. This means that the barrier does
not influence the motion of K5 during the burst event. If Eq.
(3) holds for k=2, then it holds for all £ > 2 because the
counter increments are greater. So assume k = 2.

The proof goes by induction on #n. Equation (3) holds for
n=m~ 1. Let n be in the burst event and assume that Eq. (3)




holds through time # -~ 1. There is an integer i between n~ 6
and # such that e;; = 1 or e,; = 1. By assumption,

K,G-1)-Kym- 1=Ky~ 1)-Kym-1) (4

If ¢;; = 1, then C, = 1111001 propagates into the g,, stream.
If there are no other symbol errors from time { onward, then
K3() - K3(i- 1) takes values 1, 2, 3,4,3,2,3forj=4,- -,
i + 6. Similarly, e,; = 1 by itself propagates C; = 1011011 and
causes K4(f)~ K5(i- 1) to take values 1, 0, 1, 2, 1, 2, 3.
Although the counter dips to zero in- this case (if
K,(i- 1) =0), the next increment, being positive, moves the
counter away from the barrier. Since any other symbol errors
between i and i+ 6 cause the counter o take values above
those just displayed, we have shown that

Ky (- K (- D) =K3(7) - K3G- 1)

for i<j < i+ 6,in particular, for j=n. With Eq. (4), this
completes the induction and proves Eq. (3) over the whole
burst event.

Consider now the behavior of K, during a burst event
starting at m. Each symbol error (at time n or n- 1/2)
contributes 5k to K, immediately (combined with a constant
drift of ~1 per bit), whereas the Sk-contribution to K3 is
spread over the timesn,n + 1, -+ -, n + 6. Therefore

Ky(n)- Ky (m- 1)<K,(n)- K,(m~- 1)

(In fact, the two sides are equal at the end of the burst event.)
In view of Eq. (3) and the relation

Ky(0) - Ky(6) <K, (1) - K, (5)

valid whenever s < ¢, we have
K (n)-K;(m- 1)<K,(n)- K,(m- 1) (5)

for all # in the burst event.

We are almost done. Before the first burst event (if it
exists), K4(n) = K,(n) =0. During the first event, K3(n) <
K,(n) by Eq. (5). If the first event ends, then K and K, both
start to decrease at the same rate until they hit zero or the
second burst event starts (if it exists). Just before the start of
the second event, K3 < K,. By Eq. (5), K3 < K, during the
second event, and so on. This proves the second half of Eq.
(2), and completes the proof of the theorem.

lll. Proof That the Mean Absorption Times of
Counter 2 Are Finite

Since Counter 2 takes half-integral values with time steps of
length 1/2, a simple change of variables (as in Ref. 2) brings
the notation into line with the discussions of integer-valued
random walks in Feller (Ref. 4). When we do this, we have a
random walk, with independent steps, starting at height 1.
Bach step is equal to d = 10 k ~ 1 with probability p, and -1
with probability ¢ = 1 - p. The walk is not allowed to go
below 1 (reflecting barrier at 0) and stops if it reaches or
exceeds an absorbing barrier at @ =27 + 1.

Reference 2 uses the difference-equation method of Ref. 4
to get bounds on the expected absorption time (without first
proving that the expectation exists). Here, we use the same
method to estimate the generating function of the absorption-
time distribution. For 1 <j<a-1landn=1, let u; , be the
probability that the walk is absorbed at time n, given that it
starts at height /. The first stepis toj+d orj ~ 1 and so

QU (6)

Uinr1 = Plivg .y

for2<j<a-d-1,n=1.If we account for the absorbing
and reflecting barriers by imposing the boundary conditions

Upw = Uy, =0 @<j<atd-1,n=1)
o =0 O<j<e-1) )
Ui =1 (@<j<a+d-1)

then Eq. (6) holds for 1 <j < a -~ 1, n = 0. Introduce the
generating functions

Ufs) = > u, 8" 0<j<a+d-1)
n=0

which converge at least for [s[ < 1. Equations (6) and (7) are
equivalent to the equations

Us) = psU, ) +asU,_, () (1<j<a-1) (8)
U,(s) = U, (s)
U‘/'(s)”: 1

@<j<atd-1)
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Fix an s, 0 <5 < 1. The characteristic equation of Eq. (8),
dy -1 -1
pz® +qz " = e 9)

has exactly two real, positive roots, X, (), A, (s), which satisfy
0 <A, (s) <1 <Ay(s). The sequence

A, - DA+ -2
A0, DER(-DY)

Es)

satisfies an equation analogous to Eq. (8), plus the boundary
conditions

Eo(s) =E1(s), E(5)=1
Because £ (s) is also convex in j, we have

E].(s)>1 @<j<atd-1)

Let A; (s) = E,(s) - Us) for 0 <j<a+d- 1. Then

PA 0+ 44, ) =%Aj(s) (1<j<e-1) (10)

8,6) = 4,6) (1)

A(s)=0 @<j<at+d-1)(12)

We assert that Ay(s) =0 for 0 <j <a+d - 1. To prove this let
m = A/(s) = min {Aj(s): 0<j<at+d-1}

We want to show m = 0. Ifa <r<<a+d - 1, we are done, by

Eq. (12). Otherwise, we can assume # = 1 because of Eq. (11),
and we have, from Eq. (10),

m my _
o () (o0 2) <o

Since A,,, =m, A,_; 2 m, we have

1 1
- — >
pm (1 s)+qm (1 s) 0
and so m = 0.

We have thus derived the bound

U, () SE,(5) (13)
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By a similar argument,

U, ()= Fy(s) (14)
where F(s) is like £ (s) except that a is replaced by a +d - 1.

From now on, assume that ¢ > pd. An inspection of Eq. (9)
shows that

1"7\1(8) 1
-
1-s

q_pd,)\z(s) »A>1

as s & 1-. From this we see that (1- Ey(s))/(1- $) and
(1 =Fy(s))/(1-5) both tend to finite limits as s - 1 -. Hence,
(1 - U,(s))/(1 ~5) tends to a finite limit D, . This shows, first,
that the absorption time is finite with probability 1, and
second, that its expectation is D, . In fact, the above limits give
the same upper and lower bounds on D, as Ref. 2 gives,
namely

1 (A-1 1 (X-1
—_ (A - _ < < — (£ -
q—pd(?\—l ) Dl\q~pd(>\—1 b) (15)

where b = a +d - 1, and \ is the unique real number satisfying
A>1, A9+ g\~ ! = 1. Therefore, as in Ref. 2, we have

1 -1
> _
Era 2(q—pd)(x—1 ")

because Counter 2 operates twice each bit time.

IV. A Tail Estimate for the Absorption Time

Let 7 be the absorption time for the random walk discussed
in the last section, where the walk starts at height 1. Equation
(15) gives bounds for E(r) = D,, and we now desire a bound
for the left-hand tail probabilities P{r <n }.

We say that our random walk X is reflected at time n=> 1
if X,,_, =1, X,, = 1. In other words, the walk returns to 1 and
then tries to get to 0. There is a certain probability « that the
random walk is absorbed at a without ever undergoing a
reflection. If, however, the walk is reflected, it “starts from
scratch;” again it has probability a of being absorbed before
reflection. Thus, if NV is the number of reflections before final
absorption, we have

P{N=0}=a, PIN=1}=(1- &), - - -

PN=n}=(_1-0)"a, "




We invoke the absurdly simple inequality
72N
and its consequence
Pir<n}<P{N<n}=1-(-a) (16)

For our situation this estimate is not bad; because p << 1 and
the average drift rate pd - ¢ is negative, most of the intervals
between reflections have length 1. To use Eq. (16) we need to
compute «. This is the familiar gambler’s ruin problem with
barriers at 0 and a. Again using the difference equation tech-
nique, Ref. 4, Chap. XIV, Eq. (8.12) gives

Al el a7
Aeta-l g -1

Letting o* = (A~ 1)/(A* - 1), we have

Pir<mn}<1-(1-a*"
_nall

~]-¢

for na*? << 1. Since Counter 2 operates twice each bit time,
-the false-alarm probability Py, , for Counter 1 satisfies

P., £ l-exp(-2n, a¥)

FA
(18)
~ 2n, a* for 2nba* «1
Finally, observe that
1 A=A
Em= = —-12>
@ZEE) = —- 1> 7= (19)

The quality of Eq. (16) can be judged by comparing Eq.
(19) with Eq. (15). Essentially, we are giving up a factor g -
pd in the mean,

V. Numerical Example

Let us substitute numbers from the design given in Ref. 2.
The parameters are p = 6.13 X 1073, k=8, T'=511. Then we
have d= 79, a= 1023, g - pd = 0.5096, X\ = 1.016408599,
a*=(\- 1)/(\% - 1) = 1/(1.037 X 10%).

For the false-alarm probability during n, Dbits, and the
expected false-alarm time, we have

2nb 0
Py, € —2 for 21, <10 (20)
10
B >3~ 10° bits 1)
FA * 2(0.5096)

In particular, if 7, = 10°/100 = 107 bits, then P, , < 0.02.

VI. Conclusions

We have seen that it is not difficult to get practical esti-
mates for the behavior of Counter 2, a random walk with
independent steps. It appears that the false-alarm time for
Counter 2 is approximately exponentially distributed; esti-
mates for the distribution and its mean have been given.
Although these estimates could be refined, we think that the
real loss comes from the estimate “Counter 1 < Counter 2;” a
brief simulation showed that the excursions of Counter 2 were
much greater than those of Counter 1. The real Pp, of
Counter 1 is probably much less than the 0.02 upper bound
based on Counter 2 theory.
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INFORMATION BITS Bx) = b, x"

C](x)= 1452 +><a+><5+x6

C2(x)= 1 +x+x2+x3 +x8

CODE VECTORS

*In 52n
CHANNEL ey, —p l—— ¢ El(x), Ez(x)
s*in }s*zn S;(x)l 55(")
|
Loc, ¢ L
0 e 0 F—n
Ay 1 L N
- 2 2 2
= —
3 3
INVERSION | | i A= axt
VECTORS  |a—o 4 4 |—» 2 3 4
N ] A2(x)=l+x+x +x7+x
5 5
O
[ 6] ¢
SYNDROME Py P(x)
DECODED BITS b* B*(x) = B(x) + D(x)

n

Al(x) C](x) + A2(x) Cz(x) =1

Fig. 1. Quick-look decoder for the DSN (7, 1/2) code
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